
Project Report

The Design and Implementation of ‘Cap’: A

Compile-to-JavaScript Programming Language

School of Engineering and Informatics, University of Sussex

Student: Ben Gourley
Supervisor: Martin Berger

2011-2012

2

Statement of Originality

This report is submitted as part requirement for the degree of Internet Computing at
the University of Sussex. It is the product of my own labour except where indicated
in the text. The report may be freely copied and distributed provided the source is
acknowledged.

Signed: Date:

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

3

Acknowledgements

I would like to acknowledge the support of the following people/organisations in
relation to this project:

Martin Berger Martin acted as project supervisor, offering feedback and guidance
throughout the project. His knowledge in the field of programming language
design was invaluable.

Des Watson Des taught the compilers course that I took in my second year; much
of the learning outcomes of which were used directly in this project. Des also
provided help in the early stages of my complier implementation.

Clock Ltd. Clock employed me as an intern front-end web developer. The experi-
ences there gave me the inspiration for this project.

Cara Haines I would like to thank my girlfriend for her support during the project.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

CONTENTS 4

Contents

1 Introduction 7
1.1 Project Aims . 7
1.2 Report Structure . 7

2 Professional Considerations 8

3 Background 10
3.1 JavaScript . 10

3.1.1 Overview . 10
3.1.2 History and Evolution . 10
3.1.3 Features . 11

3.2 Project Motivation . 15
3.2.1 Fragmentation . 15
3.2.2 Syntax . 17

3.3 Relevant Projects . 17

4 Requirements Analysis 19
4.1 An Analysis of JavaScript . 19

4.1.1 Syntax . 19
4.1.2 Inheritance . 20
4.1.3 Expressiveness . 21
4.1.4 Equality . 22
4.1.5 Scope . 22

4.2 Target Users . 23
4.3 Inspiration from Other Languages 23
4.4 JavaScript as a Target Language 24

4.4.1 Compilation . 24
4.4.2 Debugging . 25

4.5 Specification . 25
4.6 Approach and Methodology . 26

5 Design and Implementation 28
5.1 Syntax . 28

5.1.1 Fundamentals . 28
5.1.2 Variables and Scope . 29
5.1.3 Literals . 30

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

CONTENTS 5

5.1.4 Function Calls . 31
5.1.5 Control Structures . 32
5.1.6 Inheritance . 34
5.1.7 Notable Omissions . 36

5.2 Codebase . 36
5.2.1 Environment and Workflow 36
5.2.2 The Compiler . 38
5.2.3 Features and Extensions . 41

5.3 Distribution . 43

6 Evaluation 45
6.1 Reflection on Language Specification 45
6.2 Reflection on Compiler Specification 47
6.3 Performance . 49
6.4 Future Extensions . 50

6.4.1 Simple Enhancements . 50
6.4.2 Decoupling From JavaScript 50
6.4.3 Bootstrapping . 52
6.4.4 User Testing . 52

7 Conclusion 53

References 54

Appendices 58

A Formal Grammar Specification 58

B Log 62

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

CONTENTS 6

Summary

JavaScript is a powerful and ubiquitous language. Its distribution exists on prac-
tically every modern personal computing device, from smart phones to PCs. As
a language, it has its fair share of flaws, and the extent of its distribution, while
making it a desirable platform to work on, means that updates and improvements
to the language are slow to propagate.

A language that compiles to JavaScript has the ability to run anywhere that
JavaScript can, which offers the opportunity to make improvements to the language
as well as being available to developers for immediate use.

This report describes the design and development of ‘Cap’, a language that com-
piles to JavaScript. This new language builds upon JavaScript’s good parts, makes
amends for its bad parts and brings in features from other successful languages.

A compiler for Cap was implemented—successfully creating a more clutter-free
and consistent language than JavaScript. The compiler makes abstractions for the
un-even surface of different JavaScript environments—old and new browsers, and
server side (with Node.js)—providing a unified experience for the developer.

The end result of the project is a working compiler that successfully achieved its
design goals, and is ready to be adopted by developers.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

1 INTRODUCTION 7

1 Introduction

1.1 Project Aims

The aim of this project is to design and implement a programming language in
JavaScript. The core motivation is to expose the good underlying features of
JavaScript and capitalise on its ubiquity in a unified and terse syntax, while providing
a layer of abstraction for its weaknesses and idioms.

The syntax of the language should be designed, as much as possible, with the
programmer in mind and not the compiler. It should be uniform and consistent,
with as few anomalies as possible. The language should be terse and expressive,
allowing the programmer to write less while achieving more.

1.2 Report Structure

This report addresses the professional considerations of the project. It then gives a
detailed explanation of the project background: what JavaScript is, the motivation
behind the project, and an introduction to projects with similar goals. The language
specification, based on an evaluation of JavaScript’s shortcomings and inspiration
from other languages, is gathered and formulated in the requirements analysis
before the actual implementation of the compiler and its surrounding features is
described. An evaluation of the project in terms of achieving its goals, and its
practicality for real-world applications is made before the closing remarks are made
in the conclusion.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

2 PROFESSIONAL CONSIDERATIONS 8

2 Professional Considerations

The ethical issues covered in the British Computer Society’s Code of Conduct[7]
and Code of Practice[8], which are relevant to this project are outlined below:

• Professional Competency and Integrity: “respect and value alternative view-
points and, seek, accept and offer honest criticisms of work”

Programming languages are a source of great divide in the developer commu-
nity. While staying focussed on the core aims of the project, the viewpoints
and criticisms of others should be upheld and used in a constructive manner.
Likewise, the opinions expressed in this project should be balanced and well
informed.

• Duty to Relevant Authority: “NOT misrepresent or withhold information on
the performance of products, systems or services. . . or take advantage of the
lack of relevant knowledge or inexperience of others”

Care should be taken that any third party projects represented in this report
be presented in a fair and unbiased light. Conclusions should be drawn about
such projects objectively on an evidential basis.

• Duty to Relevant Authority: “accept professional responsibility for your work”

If any of the source code authored during this project is released in the public
domain, it should be coupled with an appropriate licence so that the end user
takes on all responsibility for the consequences of its use.

• Act Professionally as a Specialist: “Understand the boundaries of your spe-
cialist knowledge”

The project supervisor should be used to obtain, or find out how to obtain,
knowledge outside of the project author’s specialist area.

• Act Professionally as a Specialist: “Be aware that most people within the
organisation do not share your expertise; avoid technical jargon and express
yourself clearly in terms they understand”

While in all specialist areas there is a core set of domain specific language,
the writing style of documents produced should be written (as much as is
possible) in plain English. If a potentially unfamiliar term occurs, it should be
explained or referenced upon its first use.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

2 PROFESSIONAL CONSIDERATIONS 9

• Act Professionally as a Specialist: “Keep in close touch with and contribute
to current developments in the specialism”

Projects of a similar vein to this one should be tracked throughout the duration
of the project. The project itself fulfils contributing to current developments.

• Manage Your Workload Efficiently: “Report any overruns to budget or timescales
as they become apparent”

Along with the other points in this section, if any doubt is raised over workload,
the project supervisor will be contacted for guidance.

• When Designing New Systems: “Resist the pressure to build in-house when
there may be more cost effective solutions available externally and vice versa”

In this case the cost would be time and not money, but the point is still
relevant. If a suitable component of the system is available elsewhere, its
quality should be evaluated and used if shown to be acceptable.

• When Programming: “Strive to produce well-structured code that facilitates
testing and maintenance”

This point is self explanatory. Testing should be an active part of development,
and so code should facilitate testing at all times.

• When Testing: “Create a test environment whereby tests can be re-run and
the results are predictable” and “Plan the tests to cover as many paths through
the software as possible, within the constraints of time and effort”

An automated test suite should be used and, if possible, a code coverage tool
should be used to facilitate this.

• When Writing Technical Documentation: “Set a high standard of documen-
tation” and “Strive to keep documentation up to date”

An automated tool should be used to generate documentation from source
code comments. This prevents documentation of a system in development
from going quickly out of date, so long as comments are updated at the same
time as the code. Every effort should be made to maintain the comments, as
outdated comments can be misleading and are less useful that no comments
at all.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

3 BACKGROUND 10

3 Background

At its core, JavaScript is an incredibly powerful language—it is object-oriented,
objects are dynamic, there are first-class functions and it is evented. This section
gives an overview of JavaScript, how it came to be, and outlines some of its features.
JavaScript is not without its shortcomings, in part due to its rapid birth and stunted
augmentation, so this section also describes the motivation for writing a language
that improves upon it.

3.1 JavaScript

3.1.1 Overview

JavaScript is a general purpose programming language. Its main use is for scripts
and applications that run on web pages inside of a browser. The scope of JavaScript
is such that useful behaviour may be achieved in a couple of lines of code, for
instance, showing a tooltip, or it can be a platform for large web-applications such
as Gmail.

3.1.2 History and Evolution

Before the introduction of JavaScript, web pages were static. To achieve any level
interaction, multiple requests had to be made to the server, upon which, whole new
documents would be generated, even for the smallest change. JavaScript was con-
ceived as an embedded scripting language for the web browser by Brendan Eich at
Netscape. It provided the means of manipulating HTML documents, circumventing
the need for multiple page requests, thus providing richer experiences without delay
or page refreshes. This facilitated functionality like client-side form validation, ani-
mation and reaction to user input (e.g. clicks and key presses). It first shipped with
the Netscape browser in 1995[34], and from that point onward, every new browser
came equipped with some version of JavaScript. Now a fully-fledged programming
language, it is ubiquitous; since it is the [?] language of the web, any device with a
respectable form of web access will have a JavaScript implementation. This includes
all major operating systems, and devices ranging from desktops to mobiles. Most
browser vendors implement their own JavaScript engine—a piece of software that
will interpret and execute JavaScript code, according to the ECMAScript1 specifica-

1ECMAScript is the name given to the standardised JavaScript specification (governed by the
standards body ECMA International), since ‘JavaScript’ is a Sun/Oracle trademark.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

3 BACKGROUND 11

tion. Examples of JavaScript engines include V8 (Google Chrome), Spidermonkey
(Firefox) and JavaScriptCore (Safari).

Douglas Crockford, a senior JavaScript architect at Yahoo and a thought-leader
in JavaScript development, describes the language as “Lisp in C’s clothing”[15]. Lisp
is a popular programming language for a number of reasons, including its powerful
meta-programming abilities and higher-order functions. In designing the language,
Eich wanted to expose some Lisp-like power to JavaScript, but he was restricted in
terms of what the syntax could look like. This was due to a Netscape marketing
ploy to capitalise on the popularity of Java at the time JavaScript was conceived.
It had to “look like Java only less so”[19].

While the browser remains the most widespread implementation of JavaScript,
its popularity has lead to appearances elsewhere. Node.js[28], a relatively new
development, is one such example—a platform designed for writing networked ap-
plications (e.g. web servers). Node makes use of Google’s V8 JavaScript engine,
adding support for file and network IO, meaning that JavaScript can be used to
write a more traditional style of program outside of the browser. It has experienced
a great deal of exposure based on its speed and ideology, and as a result has become
a popular platform. Other uses of JavaScript outside of the browser include plugins
for Adobe Photoshop and Dashboard Widgets for Mac OS X.

3.1.3 Features

Object-orientation

Like most modern programming languages, JavaScript is object-oriented. Objects
are data-structures—containers for state and behaviour. They facilitate many estab-
lished software engineering practices including: abstraction—hiding complexity and
implementation details; encapsulation—privacy and logical grouping of functional-
ity; and modularity—separation of distinct functionality. In JavaScript, objects are
unordered sets of named properties, which can be of various data types including
other objects. Everything is an object, except the primitive types: undefined,
null, boolean, string and number. Differing from objects, these primitives have
only one value and can’t have properties—however, the latter three appear to have
properties and can be interacted with like objects; this is because they have object
wrappers and JavaScript will coerce them[16].

Sometimes, the functionality of multiple objects will overlap. In order to facili-
tate code reuse in such cases, object-oriented languages generally offer inheritance
mechanisms. Inheritance allows an object to inherit behaviour from another object,

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

3 BACKGROUND 12

preventing duplication of their shared functionality. There are two prevailing types
of inheritance: classical and prototypical. The classical approach has the concept
of a class, which can be thought of as a blueprint or mould for objects; it defines
the properties and behaviour for a certain type of object, and it can be used to cre-
ate objects of that type. Inheritance is achieved by declaring that a class ‘extends’
another class. The prototypical approach is conceptually simpler in that objects are
not created from classes, and they may inherit directly from other objects, but its
use is less widespread and therefore the techniques are less well known.

Most popular programming languages, including C++, Java, Ruby and Python
use classical inheritance techniques. JavaScript is the only mainstream language
the employs the prototypical method. In JavaScript, all objects have a hidden link
to a prototype, which is another object whose behaviour and state they inherit and
extend. JavaScript’s implementation of the prototype chain is exemplified in Code
Snippet 1 and illustrated in Figure 1.

Code Snippet 1 Example of JavaScript’s prototypical inheritance

// Create an animal prototype
var Animal = Object.create(null);
Animal.species = 'Unknown species ';
Animal.isAlive = true;
Animal.eat = function () {

this.species + ' is eating ';
};

// Create a tiger prototype that
// inherits from the animal prototype
var Tiger = Object.create(Animal);
Tiger.species = 'Tiger ';
Tiger.pounce = function () {

return this.species + ' pounced ';
};

// Create a tiger using
// the tiger prototype
var tiger = Object.create(Tiger);

tiger.eat(); // 'Tiger is eating '
tiger.pounce (); // 'Tiger pounced '
tiger.isAlive; // true

An Animal prototype is created, followed by a Tiger prototype, which uses the
Animal as its prototype. A tiger object is created from the Tiger prototype. The
tiger object has none of its own properties, but calling the methods eat() and
pounce() on it causes them to be looked up on the objects in the prototype chain.
When found, the methods behave as if they did belong to the tiger object.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

3 BACKGROUND 13

Figure 1: Illustration of JavaScript’s prototypical inheritance

Dynamic Typing

Object-oriented programming languages may deal with object types in one of two
different ways: statically—at compile-time or dynamically—at run-time. Compile-
time checking means that type errors, for instance dividing an integer by a string, can
be caught before the program is ever run, thus offering a degree of safety. As well
as preventing this class of run-time error, statically typed languages generally run
faster since they do not have to make the type-checks at run-time. The advantage of
dynamic typing is that not all type information needs to be available at compile-time.
This enables features such as dynamic objects—where objects can be composed
and manipulated at run-time, and the eval function—where arbitrary data can be
executed as code.

JavaScript is dynamically typed. It is also weakly typed, meaning that it employs
various rules for implicit type conversion. This can be useful, but can also be
problematic; for example, the + operator is overloaded: it is used for both addition
and concatenation. If both operands are numbers, the + means addition; however,
if any operand is a string, it means concatenation. Building strings is a case where
this is useful:

'There are ' + amount + ' widgets '

This implicit conversion can be an issue when the programmer makes assumptions
about variables’ type.

First Class Functions

In JavaScript, functions are first-class citizens of the language, meaning that they
can be passed around just like any other value. The support of first-class functions

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

3 BACKGROUND 14

also means that JavaScript has higher-order functions: functions that may receive
functions as arguments, or return a function. These are powerful constructs to
have; providing opportunities for abstraction that result in less code, that is more
expressive, and reusable[38].

JavaScript also has anonymous functions—functions that are not bound to an
identifier. These are useful for defining small, use-once functions for passing as
arguments.

JavaScript functions also behave as closures—they close over the scope in which
they are created, meaning all of the variables in scope at that time are available
inside the function when it is called. This is useful for implementing private state,
as shown in Code Snippet 2.

Code Snippet 2 Privacy with closures

// A function which returns a
// counter , with a private member
// `num ` and a public function
// `next `.
var createCounter = function () {

var num = 0;
return {

next : function () {
// This function closes
// over `num ` so it exists
// beyond the execution of
// the `createCounter ` function
return num++;

}
}

};

// Create counter
var counter = createCounter ();

// Public access to `counter.next `
counter.next (); // 1
counter.next (); // 2
counter.next (); // 3

// Cannot access `counter.num `
counter.num; // undefined

Events

Typically, JavaScript executes in a single thread, and in a browser this thread also
handles all of the user interaction (pressing keys, clicking links, etc.). It is very im-
portant, therefore, that programs do not block unnecessarily, otherwise the browser

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

3 BACKGROUND 15

would become unresponsive. Blocking is where a part of the code occupies the
CPU, allowing no other code to execute. In its single thread, JavaScript runs on
an event loop. The convention of event driven, asynchronous programming with
callback functions can give the impression of concurrency without the complexity of
threads. This concept is illustrated by comparing an example that blocks, in Code
Snippet 3, and an example that makes use of the event loop, in Code Snippet 4.

Code Snippet 3 Synchronous fade-in animation

var startTime = Date.now(),
animationLength = 300,
progress;

while (progress < 1) {
progress = (Date.now() - startTime) / animationLength;
element.style.opacity = progress;

}

console.log('Another action ');
// This statement will always execute once
// the animation has completed , as the while
// loop used for the animation blocks

In the context of Node.js, asynchrony is equally, if not more important. The
range of potentially blocking actions extends to database calls and interacting with
the filesystem—actions which have a degree of latency attached to them. If Node
was used to write a web server that communicated synchronously with its connecting
clients, it would only be able to service one client at a time.

3.2 Project Motivation

There are two main aspects motivating this project. Firstly, the fragmentation of
JavaScript environments results in the programmer only being able to rely on the
‘lowest common denominator’ if they want their code to be portable. Portability
is especially poignant in web development, since the developer has no control over
which browser is used. Secondly, the syntax of JavaScript, while a subjective matter,
could arguably be greatly improved.

3.2.1 Fragmentation

Though the fifth and current version of ECMAScript describes a language with
significant improvements over previous iterations, many instances of JavaScript en-
vironments, such as out-dated web browsers, are stuck with old implementations.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

3 BACKGROUND 16

Code Snippet 4 Asynchronous fade-in animation

var startTime = Date.now(),
animationLength = 300,
progress;

// setTimeout takes a function to
// place on the event loop and
// the number of milliseconds in
// the future that it should execute
setTimeout(function step() {

progress = (Date.now() - startTime) / animationLength;
element.style.opacity = progress;

// If the animation isn 't finished , push
// this step function onto the event loop
// to run again at a frame -rate of 60fps.
if (progress < 1) setTimeout(step , 1000 / 60)

}, 0);

console.log('Another action ');
// This statement will always execute before
// animation has started , as the animation
// uses the event loop for each increment

setTimeout(function () {
// This statement will execute
// after 100ms even though the
// animation is in progress , due
// to the fact that the animation
// only runs a small piece of code
// on each iteration of the event loop
console.log('And another ');

}, 100);

While Eich and others work on the future iterations of ECMAScript, referred to
as ‘ES.next’[18], web developers building real applications must write code accord-
ing to old standards, unable to take advantage of new features and improvements
without breaking compatibility. Current market share statistics show that a quarter
of page views are from browsers that are only ECMAScript 3 compatible[41]—a
standard which was published in 1999, over 11 years ago.

A new language that has JavaScript as a target, and makes improvements upon
it, would be useful to developers immediately.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

3 BACKGROUND 17

3.2.2 Syntax

While the newest standards make amends for some of the bad parts of JavaScript,
it is unlikely that syntactically much will change. Not only is syntax something
that characterises a language, but it is important for new versions to be backward-
compatible with existing code still works. This restricts the set of changes that can
safely be made.

Syntax is important to programmers because they use it every day. Good syn-
tax is legible and expressive, enabling quick interpretation of meaning and intent.
JavaScript’s syntax, while familiar to programmers used to C-like syntax, can be
cluttered, with lots of parentheses and symbols. The similarity to C++ and Java
can also be a drawback, leading programmers to assume similarity in other aspects
of the language, causing confusion when things do not work as expected.

Syntax is a contentious issue among programmers, and a language that compiles
to JavaScript can give developers choice in a domain that is dominated by a single
language, and therefore a single style.

3.3 Relevant Projects

There are a number of projects with similar goals that are worth noting:

Google Traceur[23] A project that compiles ‘ES.next’ features to current JavaScript.
This enables the eager developer to use new features while not sacrificing
browser compatibility. The downside of this project is that ES.next is in
a constant state of change, sometimes removing functionality, which makes
Traceur a volatile platform to use.

CoffeeScript [3] A language very closely based on, and implemented in, JavaScript.
It brings Ruby and Python inspired syntax, while remaining tightly coupled
with the underlying JavaScript. The website points out that CoffeeScript
“maps one-to-one” with the compiled JavaScript. CoffeeScript has gained so
much popularity that some of its features have been considered for future
versions of JavaScript in ES.next[18].

Dart[27] A programming language by Google that brings static typing and classical
inheritance to JavaScript-like syntax. The project currently consists of a Dart
to ECMAScript 3 compiler for immediate use. In the long term Google intends
to implement a Dart virtual machine in their Chrome browser, and hopes that

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

3 BACKGROUND 18

other vendors will follow suit, therefore replacing JavaScript as the de facto
web programming language.

Various Compilers Compilers (or backends for existing compilers) have been writ-
ten for many languages to use JavaScript as a compilation target[12]. Exam-
ples include:

• OCaml

• Scheme

• Clojure

• Java

• Ruby

• Python

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

4 REQUIREMENTS ANALYSIS 19

4 Requirements Analysis

4.1 An Analysis of JavaScript

4.1.1 Syntax

There are two prevalent styles of syntax, C-like and whitespace-significant. C-like
syntax uses semi-colons to end statements and curly-braces to denote blocks. By
convention, extra whitespace is used for the readability of code, but it is not required
by the compiler and is therefore ‘insignificant’. Languages where whitespace is
‘significant’ use newline characters to separate statements, and differing levels of
indentation to denote block.

Contrary to other languages with functional programming characteristics, like
Haskell and ML, JavaScript uses C-like syntax. The lack of significant whitespace
in JavaScript means that the two pseudo-code examples in Code Snippets 5 and 6
are equivalent:

Code Snippet 5 With whitespace

if (test) {
doSomething ();

} else {
doSomethingElse ();

}

Code Snippet 6 Without whitespace

if(test){ doSomething ();} else{doSomethingElse ();}

The first example is significantly easier to follow, and as such, any software
developer or team will enforce some style including whitespace to enhance legibility.
This makes the reader rely on indentation to interpret what the code is doing. If
there is an error in the indentation, then the reader’s interpretation of the code will
be misled, as shown in Code Snippet 7.

The call to function doSomethingElse() looks like it would be executed re-
gardless of whether test evaluates to true of false, which is not the case.

A problem specific to JavaScript, due to the existence of function expressions
and object literals, is the common occurrence of the sequence });. The } closes
a function expression, the) closes a bracketed expression or function call, and the

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

4 REQUIREMENTS ANALYSIS 20

Code Snippet 7 Ambiguous indentation

if (test) {
doSomething ();
if (testTwo) {

doSomething ();
}

doSomethingElse ();

}

; indicates the end of a statement. Code Snippet 8 shows an example using the
jQuery library to run a sequence of animations, highlighting this issue.

Code Snippet 8 Excessive repetition of the string ‘});’

$('#first -element '). fadeIn('fast ', function () {
$('#second -element '). fadeIn(fast ', function () {

$('#third -element '). fadeIn('fast ', function () {
console.log('Animations finished ');

});
});

});

As previously mentioned, semi-colons are used to indicate the end of a statement.
The JavaScript specification has a feature for automatic semi-colon insertion, but
it is best practice to explicitly use semi-colons and not to rely on this feature. Code
Snippets 9 and 10 show two examples where semi-colon insertion is unhelpful.

4.1.2 Inheritance

As Douglas Crockford states, “JavaScript is conflicted in its inheritance model”[15].
The built in inheritance system is prototypical, which conflicts with other C-like
syntax languages like Java and PHP (and other mainstream languages like Ruby)
that use classical inheritance.

The concept of a ‘class’ is not at all present in the language; however, the
new keyword, with which classes are synonymous, is. The purpose of the new

keyword is to invoke constructor functions, another concept that exists in classical
inheritance. The presence of the new keyword and constructor functions leads to
confusion amongst developers, and leads some to believe that the inheritance model
in JavaScript is ‘broken’. Because of this, and due to the power that prototypical
inheritance provides, there are many libraries simulating classical inheritance in

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

4 REQUIREMENTS ANALYSIS 21

Code Snippet 9 Automatic semi-colon insertion

function createPerson(name , age) {

return // A semi -colon is automatically inserted here
{

name : name ,
age : age ,
species : 'human ',
arms : 2,
legs : 2

}; // This object literal becomes an
// unreachable expression as the
// function will always return from
// the line above

}

createPerson('Ben ', 23); // Returns undefined

Code Snippet 10 Automatic semi-colon insertion

foo()
[1,2,3]. forEach(bar)

// ...is actually interpreted as...

foo()[1, 2, 3]. forEach(bar);

// Which is not a syntax error , but
// will result in a runtime error

JavaScript[39][13][33][35].

4.1.3 Expressiveness

JavaScript has a powerful object literal notation for defining objects on the fly, a
function expression and the standard array literal. These three expressions make it
possible to define simple (but not primitive) types on the fly, saving excessive use
of variable declarations. A comparison of a function call with and without these
expressions is shown in Code Snippets 11 and 12. Legibility could be argued either
way, as the arguments are visible in place but they clutter the function call. The
expressions are, however, shorter and less repetitive.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

4 REQUIREMENTS ANALYSIS 22

Code Snippet 11 Without expressive expressions

var list = new Array ();
list [0] = 'a';
list [1] = 'b';
list [2] = 'c';

var options = Object.create ();
options.direction = 'reverse ';
options.type = 'letters ';

function callback () {
console.log('Finished ');

}

sort(list , options , callback);

Code Snippet 12 With expressive expressions

sort(
['a', 'b', 'c'],
{ direction : 'reverse ', type : 'letters ' },
function () {

console.log('Finished ');
}

);

4.1.4 Equality

In JavaScript, the true equality operator is === (triple equals). The == (double
equals) does type coercion, for instance 0 == false evaluates to true, and is
therefore considered dangerous.

4.1.5 Scope

Scope is the context within which variables exist and can be referenced. Where
other C-like languages have block-scoped variables, JavaScript has function-scope.
This means that a variable defined anywhere within a function can be referenced
from anywhere else in the same function, even if it was defined in a block (e.g
if/else, while) inside that function.

Global scope, where variables are accessible from anywhere in the program,
can be a source of unreliability and insecurity[14]; they are a potential source of
namespace collision, and because they are accessible and mutable from anywhere,
they are unsafe to rely on. Unfortunately, JavaScript has a global scope2. Because

2The default scope in Node.js is actually a ‘module’ scope. While safer than the global scope,

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

4 REQUIREMENTS ANALYSIS 23

of this, measures have to be taken to avoid it. It is best practice to wrap all code
in an anonymous, self-executing functions, which binds variable declarations to the
scope of the function instead of the global scope. Variable declarations start with
the var keyword. If this is omitted, the variable is assumed to be global. Code
Snippet 13 illustrates these global scope issues.

Code Snippet 13 Avoiding global scope

var x = 10;

console.log(x); // Outputs `10' to the console

(function () {
var y = 20;
console.log(y); // Outputs `20'

}());

console.log(y); // Outputs `undefined ' because
// y is bound to the context
// of the anonymous function

(function () {
x = 30; // 'var ' missing , x is assumed to be global

}());

console.log(x); // Outputs '30'. Previous
// value is overwritten.

4.2 Target Users

The demographic for users of the language need not come from a JavaScript back-
ground. The language should be easier to learn than JavaScript, since it aims to be
more uniform and improve on JavaScript’s shortcomings. Therefore, it should be a
suitable language for novice and expert programmers alike.

4.3 Inspiration from Other Languages

The offside rule (where significant whitespace is used to denote blocks with in-
dentation, instead of matching parentheses), as seen in languages like Python and
CoffeeScript is useful for disposing of unnecessary characters. If the indentation
is required by the language, there can be no variation in style between develop-
ers, meaning code is also more portable between development teams who might
otherwise have different coding styles.

since it is local to each source file, the same dangers exist.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

4 REQUIREMENTS ANALYSIS 24

In other functional programming languages such as Haskell and ML, functions
are invoked not with parentheses, but simply by juxtaposing an argument. This does
away with visual clutter, leaving only the important tokens from which to extract
meaning from.

Cap is unquestionably significantly inspired by JavaScript, and by building on
top of it, it is able to take advantage of its good features.

4.4 JavaScript as a Target Language

4.4.1 Compilation

In order to use JavaScript as a target language, meaning that compiled Cap pro-
grams are able run anywhere that JavaScript can, there needs to be a way of
translating from one language to the other. A program that translates source code
of one language to that of another is known as a compiler.

The typical compiler structure consists of four different components, which are
illustrated in Figure 2. These broadly fall in to two different phases: analysis of the
source program—lexical, syntax and semantic analysis, and synthesis of the target
program—code generation.

Figure 2: Typical compiler structure

The task of the lexical analyser is to tokenise the input—recognising characters
and grouping them into basic syntactic components. The syntax analyser, also
known as a parser, takes the tokens provided by the lexical analyser and matches
their appearance against a set of rules about the syntax of the language. If these
checks pass, and source program is syntactically valid, the parser returns an abstract
representation of the program known as a ‘parse tree’ or ‘abstract syntax tree’. The
semantic analyser generally deals with further analysis of the source program, like
scope and type checking. This step may also facilitate features that exist in the
source language but not in the target language (e.g. storage allocation). Finally,
the code generator takes the output from the previous steps and generates source
code of the target language.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

4 REQUIREMENTS ANALYSIS 25

4.4.2 Debugging

When using a high-level language as a compilation target, programs can become dif-
ficult to debug. A typical language has a stack of development resources, including
tools like a debugger that can step through lines of source code. These tools will be
significantly less useful when they are operating on compiled code, since the code
is a step removed from what the developer has written and is likely unrecognisable.

Modern web browsers implement tools like the step-through debugger for JavaScript,
and there is an open bug ticket[20] at Mozilla to get Firefox to add support for source
maps. Source maps are tables that can be generated by a compiler, mapping loca-
tions in compiled code onto the locations of source where they were authored. This
means that the debugger can step through JavaScript execution, but can show the
developer the source of the language that they used to code with.

A rudimentary solution for debugging until browsers implement source maps
would be to output the line number of the source code into a comment on the line
of generated source.

4.5 Specification

Based on the analysis of JavaScript and the identification of concepts to draw in
from other languages, a specification of the high-level goals of the Cap language
and its compiler can now be arranged:

The language should:

• be as uniform as possible

• be as simple as possible

• have as few parentheses and unnecessary characters as possible

• use prototypical inheritance

• be dynamically typed

• have expressive literals

• use significant whitespace as a block delimiter

• have method invocation by juxtaposition

• not require that variables are declared using a keyword like var, instead they
should be allocated when they are first used

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

4 REQUIREMENTS ANALYSIS 26

• not require semi-colons, nor automatically insert them as a statement termi-
nator

The compiler should:

• wrap all compiled code in an anonymous function to prevent polluting the
global (or module) scope

• emit useful error messages when a compilation fails

• produce compiled code that always has semi-colons at the ends of statements
(i.e not rely on automatic semi-colon insertion)

• produce compiled code that runs in ECMAScript 3+ environments

• provide an option to output the line number of source code as comments in
the compiled source

4.6 Approach and Methodology

The evaluation of new programming languages is a difficult and unsolved problem.
The only effective way to evaluate a programming language is for it to be used by
many developers for many different applications—something that does not happen
without the language gaining popularity. Ultimately, there is an absence of good
methodologies to evaluate new programming languages; a problem which all lan-
guage designers encounter. In the absence of methodologies, I will have to rely on
my intuitions gained from experiences using other programming languages. Though
there is no reliable way to measure the quality of the language, the success of the
project can be measured by the degree in which the specification is met.

A problem exists in a language’s early phase: in order to try out the language by
writing programs, the compiler must work, and in order for the compiler to work, the
grammar must be well-defined. This is problematic when the grammar is in a state
of continuous change. To overcome this problem, the only suitable approach is to
rapidly iterate and prototype. For this reason, the software engineering methodology
that suits programming language design is iterative and incremental development.

Three main phases of the project were identified:

• Phase 1: Core Compiler, Autumn Term

• Phase 2: Language Features and Compiler Extensions, Autumn Term–Spring
Term

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

4 REQUIREMENTS ANALYSIS 27

• Phase 3: Proof of concept application, Spring Term3

The work at each of these phases was not intended to be mutually exclusive,
but to give targets for the completion of large bodies of work; for example, writing
the first actual application in the language in Phase 3 is likely to uncover bugs in
the compiler, in which case, code from Phase 1 or 2 must be revisited.

The final design of the syntax was tightly coupled with the implementation of
the compiler, so it was an underlying goal of Phases 1 and 2. While most decisions
were made at these stages, finer points were continually refined throughout the
duration of the project.

3The proof of concept application does not feature in this report—it is intended for use in the
presentation.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

5 DESIGN AND IMPLEMENTATION 28

5 Design and Implementation

5.1 Syntax

Since Cap is so heavily based on JavaScript, and makes use of many of its pre-
existing features, its syntax can succinctly be defined by its differences to JavaScript.
A description of the syntax in these terms follows, and various design decisions will
be justified along the way. A formal specification of the language can be found in
the appendices of this document.

5.1.1 Fundamentals

Cap inherits most of JavaScript’s basic constructs, some with improved syntax.

Numbers

Like JavaScript, there is only one type for numerical values—Number. Internally
this incurs a performance overhead, but provides lower cognitive load on the pro-
grammer, as they do not need to worry about precision or type-coercion.

5
20.1
0.0003
10e5

Strings

Strings are delimited with single quotes. Single quotes inside strings are escaped
with ‘\’. In JavaScript, double quotes are also legal delimiters, but for consistency
in Cap these have been removed.

'hello '
'it\'s all ok'

Booleans

In Cap, booleans are exactly the same as in JavaScript.

true
false

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

5 DESIGN AND IMPLEMENTATION 29

Logic, arithmetic and concatenation

Cap expressions differ from JavaScript expressions in two ways. Firstly, the addition
operator is +, and the concatenation operator is the :, whereas in JavaScript the
+ is used for both. This can lead to uncertainty about what the + might do,
and silent errors, due to type-coercion on operands with different types. Secondly,
JavaScript has bitwise operators. Bitwise operators are often used in other languages
for a performance gain on certain operations; this gain can happen because other
languages have primitive data-types represented internally as bytes. In JavaScript,
there are no byte-sized internal representations, and as a result the bitwise operations
are slow. This, coupled with the fact that they mask intent, means that Cap does not
use them. If the Cap programmer wants to do bitwise operations, for cryptography,
for example, they can easily be implemented with functions. The omission of bitwise
operators means the JavaScript logical operators AND (&&) and OR (||) can be
used without repetition.

5 + 5
10 / 2
-13

'Hello ,' : ' World '

a & b
a | b
!someValue

5.1.2 Variables and Scope

Unlike JavaScript, there is no keyword to define a variable; instead, a variable is
defined when it is first assigned to. Assigning to a variable that is already defined
will modify that variable, meaning that variables declared in outer scopes cannot be
obscured. This is how variables are defined and behave in Python.

today = 'Wednesday '
result = 4 * 5 / 3

In JavaScript, variables have function scope, which is considered confusing and
unhelpful, so much so that in ES.next, the var operator is being phased out in favour
of the new let operator, which defines a block scoped variable without breaking
backwards compatibility. In Cap, all variables have block scope. If a variable needs
to be initialised in an outer scope, it can be assigned to the null value, which is
represented by an empty tuple:

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

5 DESIGN AND IMPLEMENTATION 30

toBeDefined = ()

Like JavaScript, objects’ properties can be accessed in two ways: dot and sub-
script notation. The latter means that property lookup can be dynamically defined
at runtime.

The following are equivalent
myObject.property
myObject['property ']
myObject['prop ' : 'erty ']

5.1.3 Literals

JavaScript has very powerful literals. However, these are littered with parentheses
and inconsistencies. Cap literals are defined with indented block syntax and a two
symbol ‘keyword’.

Function

Function expressions are defined with a pair of pipes delimiting 0 or more space
separated arguments. The function body is a series of 1 or more statements. Unlike
JavaScript, there is no return keyword. The result of the last statement is implicitly
returned, like Haskell and ML. The return statement is not a part of the Cap
language.

Where JavaScript has a function statement and a function expression, the func-
tion expression is the only way to create functions in Cap.

The square function
|x|

x * x

A function with no args
||

print 'hello '

Array

The underlying JavaScript array is a higher abstraction than a typical array—it
operates more like a list, and neither the type of elements it can hold nor its size
are fixed.

The array expression is a pair of square brackets. Optionally, this is followed by
an indent and 1 or more line-separated items to fill the array with.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

5 DESIGN AND IMPLEMENTATION 31

Create an empty array
[]

Create an array with
some initial contents
[]

'my '
'array '
'of '
'items '

Arrays are accessed using the subscript notation with zero-based indexing:

Gets the 6th item in myArray
myArray [5]

Sets the 3rd item in myArray
myArray [2] = 10

Object

The object expression is a pair of curly braces. Optionally, this is followed by an
indent and 1 or more line-separated assignments to initialise the object’s properties
with.

Creates an empty object
{}

Create an object with
some initial properties
{}

width = 20
height = 40
color = 'red '

5.1.4 Function Calls

Function calls differ fundamentally from JavaScript. In Cap, a function is called by
juxtaposing a function with an argument, akin to the behaviour of Haskell and ML.
For example:

print 'Hello , world!'

If a function returns a function, these calls can be chained. In the following
example, logger is assumed to be a function that takes a string argument, which

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

5 DESIGN AND IMPLEMENTATION 32

determines the logging function that is returned. The returned logging function is
then used straight away to log a message.

logger 'error ' 'Something bad happened '

Functions in Cap are conceptually different from their JavaScript counterparts.
All functions take a single argument, compared with those in JavaScript that may
take zero-to-many. In order to simulate this behaviour, a function may take a tuple
as an argument. That tuple may be empty, simulating no arguments, or n-ary,
simulating n arguments. Tuples are parenthesised comma separated lists.

doSomething ()
triangle (3, 4, 5)

If a function returns an object that has a function as one of its properties, the
call can be wrapped in parentheses and the property accessed with the dot notation:

(getKey 'skeleton '). unlock 'all '

Cap introduces a where clause for function calls, allowing placeholders to be set
within the call and defined immediately after. Invocation by juxtaposition means
that literals cannot be used in place for arguments, since they span multiple lines;
the where clause goes some way to address this shortcoming. While it ends up being
more to type than in-place literals, the use of a where clause can better exhibit the
programmer’s intent, as the arguments become named and also de-clutter the actual
function call. The where clause is used like so:

element.animate properties where
properties = {}

top = 100
left = 200
opacity = 1

5.1.5 Control Structures

Since Cap has first-class functions, almost all functionality can be achieved with
functions. However, it is often more convenient to have control structures to do
the most basic and common tasks.

Conditionals

Conventional if/else statements are indented blocks. Unlike JavaScript, the con-
dition does not need to be wrapped in parentheses.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

5 DESIGN AND IMPLEMENTATION 33

if itWorked
print 'Hurray!'

else if itFailed
print 'Uh oh!'

else
print 'Who knows ...'

Cap also offers a shorthand conditional, inspired by the ternary expression in
JavaScript. Where an if/else would be used with only a single statement in each
clause, the shorthand conditional can be used instead. The shorthand conditional
consists of an expression followed by a question mark, then one or two indented
statements—the first is executed if the expression evaluates to true, and the second
(if it exists) if the expression evaluates to false.

haveErrors ?
showErrors ()

success ?
print 'Success!'
print 'Uh oh!'

Loops

The only loop structure carried over from JavaScript is the while loop, since all
other loops can be simulated with it. In Cap, when looping over collections, or enu-
merating an object, it is recommended to use a functional loop, e.g. Array.forEach().

i = 0
while i < 10

print i
i += 1

list = []
'apples '
'bananas '
'pears '

list.forEach printItem where
printItem = |item , i|

i == 0 ?
print 'I bought some: ' : item
print 'and some ' : item

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

5 DESIGN AND IMPLEMENTATION 34

Try/Catch

Exceptions are a construct for dealing with errors and exceptional circumstances
during the run of a program. Exceptions are ‘thrown’, and they must be ‘caught’ to
be dealt with. If an exception goes uncaught, it will cause the program to terminate.

JavaScript-like try/catch blocks are included in Cap, facilitating exception-
handling. However, while they can be useful in synchronous code, throwing ex-
ceptions and the try/catch clause are useless for asynchronous code[37], since
an asynchronous function that will callback at some point in the future with its
result returns instantly, a thrown exception won’t be caught by the surrounding
try/catch block.

In Cap, the global throw function, which takes a string of the error message,
can be used to throw an exception.

try
riskyOperation 20

catch e
print e.message

if number > 10
throw 'The number is too big '

5.1.6 Inheritance

Prototypical

In JavaScript, each object has a hidden link to another object, known as its pro-
totype. An attempt to access a non-existing property of an object results in a
lookup on its prototype, which is repeated until the prototype chain is exhausted
or the property is found. Cap leverages the underlying prototypical inheritance of
JavaScript in a simple and uniform syntax. Different object creation methods in
JavaScript can result in objects being initialised with various prototypes, but in Cap
all objects are created with a link to the built in object prototype. To manipulate
an object’s prototype, the function extend takes an object (the desired prototype)
and returns a function. The returned function takes an object to set the prototype
of. The use of prototypical inheritance is demonstrated below:

Create a useful object
vehicle = {}

drive = |dist|
print 'Driving ' : dist : ' miles '

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

5 DESIGN AND IMPLEMENTATION 35

Create another object
car = {}

wheels = 4

car inherit vehicle 's functionality
car = extend vehicle car

car.drive 10
-> prints 'Driving 10 miles '

car.wheels
-> 4

Extend can also be used as a
starting point for a new object
by passing in an empty tuple
ferarri = extend car ()
ferrari.colour = 'red '

Traits

Cap offers an alternative inheritance mechanism known as traits. It is similar to
the mechanism described by Schärli et al.[36]. Traits form an alternative form of
inheritance—a means of code reuse through composable pieces of behaviour. In
Cap, a trait is simply an object with a name property, and an apply function. The
apply function receives the object to apply the trait to. State and private function-
ality can be maintained within the closure of the function, and public behaviour
can be exposed by adding properties to the object. Traits are applied in a similar
fashion to the way prototypes are used, with a simple function:

Create a trait
driveable = {}

name = 'driveable '
apply = |obj|
obj.drive = |dist|
print 'Driving ' : dist : ' miles '

Create an object
car = {}

car gets the driveable trait
car = trait drivable car

car.drive 10

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

5 DESIGN AND IMPLEMENTATION 36

-> prints 'Driving 10 miles '

The inclusion of traits as an alternative form of inheritance is an experiment for
the language. It adds complexity, but the ability to compose objects from some
standard pieces of behaviour may be useful, as it achieves multiple inheritance,
and is not restricted by the linear inheritance chain. Further, the two models may
successfully interact to provide an effective solution.

5.1.7 Notable Omissions

Regular Expression Literals

JavaScript’s regular expression literals (Perl style regular expressions wrapped in
forward slashes) have been left out in favour of uniform syntax. Regular expression
objects can be created using the globally available RegExp function in Cap.

Block Comments

In Cap, comments are lines that begin with the # symbol. The hash may be preceded
by whitespace, but it must be the first non-whitespace character on the line.

This is a comment

There is no support for block comments, though this is not a conscious design
decision but due to simplicity of implementation. It was deemed unimportant at
this stage of development, but in theory it would be trivial to add support for both
of JavaScript’s comment styles: /* */ and //.

Various keyword operators

JavaScripts offer some keyword operators whose behaviour is indistinguishable from
that of functions. For this reason typeof, instanceof and throw are left out in
favour of functions by the same name. This maintains consistency and uniformity
in the Cap language.

5.2 Codebase

5.2.1 Environment and Workflow

The compiler was implemented in Node.js. The file system module is one of the
extensions that Node brings to JavaScript, meaning that it was a suitable imple-
mentation environment for a compiler—a program which needs to be able to read

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

5 DESIGN AND IMPLEMENTATION 37

Module Coverage
Lexer 96%
Token 100%
Parser 89%
Node 100%
Generators 96%
Compiler 88%

Table 1: Test coverage of the core modules

from and write to the filesystem. Given that Cap will be intentionally similar to
JavaScript, that Node is a primary compilation target, and that JavaScript is the
language that I know best, it made sense to write the compiler in JavaScript.

Git[11] was used for the project’s source code management, and as a result,
remote backups on GitHub[22] were made simple and easy. Most development
was done on the master branch, since there was only one developer, but for some
experimental changes and major component rewrites, feature branches were used,
which were then merged once considered stable enough.

The code linting tool JSHint[30] was used to maintain a consistent coding style,
and to prevent syntactically correct, but potentially unsafe code from being written;
for example, implicit globals and omitted semi-colons.

Testing is important for the quality and integrity of software, especially for
dynamically-typed languages. Unit tests were written using the BDD interface of
the Mocha[25] test framework. While code coverage cannot be metric for the quality
of the tests, a low amount of coverage can be the sign of a poorly tested codebase.
For this reason, 100% coverage was aimed for. Mocha has a coverage reporter, and
the code coverage documentation can be found at http://bengourley.github.
com/Cap. A summary of coverage for the core modules is shown in Table 5.2.1.

Throughout development, if a bug was found, a test was written for it before
the fix was made. This ensured that bug fixes were objective, and also helped to
increase the number and quality of tests. After any functionality was added, or any
bug was fixed, it was made sure that the changes integrated with the tests.

Regression tests were also written. These consisted of groups of files that should
either successfully parse or fail to parse. Along with the set of unit tests, these would
help bugs from being introduced via other bug fixes or feature implementations.

The following tasks were automated using GNU Make:

• generate documentation

• run tests

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

5 DESIGN AND IMPLEMENTATION 38

• build and show test coverage

• minify the browser shim

5.2.2 The Compiler

Initially Jison—a JavaScript port of the GNU bison parser generator, which is used
by CoffeeScript—was used to generate the Cap parser. A limitation in the Bison
grammar format meant that a custom lexical analyser had to be implemented to
interface with the generated parser. Due to the use of indentation in blocks, it was
not sufficient just to tokenise and accept the input; the level of indentation was
required to be analysed. Further issues occurred with the Bison grammar format.
Ambiguities struggled to be resolved when implementing function invocation by
juxtaposition.

The goals of the programming language made it very difficult to create a parser
for, with a standard parser generator, since some of the helpful things for the com-
piler were removed: semi-colons, parentheses and curly braces. Thus, the decision
was made to write the parser by hand.

Structure

The core of the compiler is made up of three modules: the lexer, parser and
generator. The command line interface provides the entry point and interface
for the program, and the compiler module ties the whole process together. The
structure of the compiler is illustrated in Figure 3.

Lexer

The lexer (lexical analyser) uses regular expressions to match tokens, removing
them from the front of an input string. It makes an abstraction of the significant
whitespace, emitting indent, outdent and vwhitespace tokens, which simplifies the
task for the parser. An n-lookahead method is implemented, enabling the parser
to ask for tokens that are not on the front of the input string, in order to help
resolve ambiguities. However only a one token lookahead is required to parse the
Cap grammar. The lexer will never fail to tokenise the input—if it encounters errors
or illegal tokens, it simply creates an error token, deferring error-handling to the
parser.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

5 DESIGN AND IMPLEMENTATION 39

Figure 3: Structure of the Cap compiler

Parser

The parser is a top-down, left-to-right, recursive descent parser. This means that
it scans the input left-to-right and has a set of recursive matching functions for the
production rules of the grammar. The parser only requires a single token lookahead
to disambiguate which rule it should apply, and does not require backtracking.
The task of writing the parser by hand was not without its difficulties, but it was
significantly more straightforward than using a parser generator.

As the parser descends the program and matches syntactic constructs of the
language, it builds node objects using the node module. The nodes are linked
together in a tree-structure, maintaining the structure of the program. When the
parse finishes, the top level ‘program’ node is returned, providing the abstract syntax
tree.

Generator

The generator orchestrates the code generation phase from the abstract syntax tree
created by the parser to JavaScript. Much of the actual work is deferred to the
generators module, which contains a generator for each type of node that could

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

5 DESIGN AND IMPLEMENTATION 40

exists in the syntax tree. A program is compiled by passing a complete abstract
syntax tree to the ‘program’ generator, whereupon all child nodes are descended
and compiled recursively. Each generator function takes the node to compile and a
‘meta’ argument so that annotations can be made, and passed down to child nodes.

As illustrated earlier, the traditional compiler has a semantic analysis step before
code generation. In the Cap compiler, due to the lack of semantic analysis required,
these two steps are combined, since the checks can be made in the same pass.
During the code generation, the generators maintain information about scope, and
the generation will fail if an out of scope variable is used. The helpers module is
used to define the list of predefined global variables that are in scope, and also a
list of JavaScript reserved words that cannot be used as identifiers in the compiled
source; the generators prefix these with an underscore to maintain legibility and
validity of the JavaScript output.

As well as generating JavaScript, the generator module can also return a human
readable representation of the abstract syntax tree, which is useful for understanding
how the parser works, and also for debugging at this early stage in the compiler’s
development.

Compiler

The compiler module instantiates a lexer, parser, generator and an error reporter,
and runs the compilation process. The error reporter is passed to the parser and
generator upon their creation so that it can be used in the case of a parse or semantic
error, halting the execution. If the compilation is successful, a string of output is
returned to the compiler. Based on the options that were passed (and provided the
output is JavaScript source and not a tree representation), the compiler may make
use of one of the third party modules, beatify[32] to format or uglify[6] to minify
and optimise the output.

Command Line Interface

The command line interface entry point is capc, which uses the third party module
commander[24]: a utility for command line option parsing and automated usage in-
formation. Once the options have been parsed, the cli module runs and instantiates
a compiler. All modules described up until this point dealt with generating a string
of output—the cli deals with reading and writing files. The cli helpers module
factors out some useful abstractions to enhance the legibility of the cli module. The

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

5 DESIGN AND IMPLEMENTATION 41

cli module provides functionality for compiling a single file, or recursively scanning
a directory and compiling all of the Cap source files found.

5.2.3 Features and Extensions

Browser Bundle

A primary performance concern for web developers is the number of HTTP requests
that each page load incurs [40]. No matter how small the number of bytes in
a file being transferred, there is a constant overhead of transporting it due to
network latency. Cap takes advantage of its compilation step and bundles all of the
required modules into a single file whenever it compiles for the browser. This means
that regardless of the number of modules, the application is always only one file.
The compiled source is ‘pretty-printed’ by default to help with debugging, but the
compiler has the to option to minify it instead.

The browser bundle includes some extra JavaScript to provide some of the fea-
tures that Cap offers. Along with the global inheritance functions, the ECMAScript
5 shim[31] is included to create the functionality in browsers that do not already
have it. It does this by testing for the existence of certain functions, and creating
them if they do not exist.

Syntax Mode for Editors

For a language to be adopted, it is necessary to have relevant development tools.
One simple but important example is syntax-highlighting in text editors which en-
hances the readability of the code. A syntax mode was created for the editors
Sublime Text 2 and Textmate, a screenshot of which can be found in Figure 4.

Module Pattern

In browser-based JavaScript development, there is no module abstraction. Appli-
cation components tend to hang off of the global scope. For instance, the popular
libraries jQuery[29], Underscore[4], and Raphael[5] are used by including them on
the same page as some dependant code and referenced by their global variables ($,
_ and Backbone respectively). The community-driven specifications, Asynchronous
Module Definition[21] and CommonJS [17] have emerged, and various libraries, for
example RequireJS[9], have been written to address this lack of functionality.

Since the ECMAScript spec does not yet address modules, browsers offer noth-
ing. However, Node.js provides the module pattern as built in structure. In Node,

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

5 DESIGN AND IMPLEMENTATION 42

Figure 4: Editor syntax highlighting

modules are mapped one to one with source files (i.e. a file may only contain a sin-
gle module). By default, all code in a module is private and inaccessible from other
modules. Functionality is made available to external modules by attaching proper-
ties to the exports object. An external module is brought in with the require()
function; the result of which is the referenced module’s exports object that can
be assigned to a variable.

Not only does this implementation create the notion of privacy, it encourages
modular development and the separation of functionality into reusable components.
It also avoids potential namespace clashes, since the required module is just a reg-
ular javascript object, and the user (not the author) of the module can decide the
name of the variable that it should occupy. This behaviour employed by Node essen-
tially follows the commonJS module loading proposal, but with a slight extension.
exports is a pre-existing object and can only have properties added; it cannot
be re-assigned. If the module author wants to export a function, array, any other
type or just a custom object, Node offers the alternative module.exports property
which can have anything assigned to it.

The compilation step that Cap requires gives the opportunity to build-in similar
functionality for the browser. Not only does this improve the standard development
workflow for writing code for the browser, it also brings consistency to the Cap

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

5 DESIGN AND IMPLEMENTATION 43

platform. The Cap developer does not need to decide what target environment
their program will run in before making the architectural decision of whether to use
modules or not. The following contrived example illustrates the usage of modules:

multiplier.cap
exports.double = |num|

num * 2

exports.triple = |num|
num * 3

adder.cap
module.exports = |a b|

a + b

script.cap
m = require './multiplier '
add = require './adder '
print (m.double 5)
print (m.triple 10)
print (add (2, 3))

Compiling these source files for either the browser or node and running script.cap
would result in the following output:

10
30
5

Module loaders like require.js have a development mode, where required modules
are loaded asynchronously with extra HTTP requests, and a production mode where
all of the modules are bundled up and concatenated for one download. Again, since
Cap always needs to be compiled, whether in development or production, the bundle
is always created. This means that there is no difference between development and
production code, lowering the chance of environment-specific bugs.

5.3 Distribution

The Cap compiler is available in npm (the package manager which comes with
Node.js) and since Node and npm are cross platform, so too is the Cap compiler
(meaning the installation process is the same, regardless of operating system). The
installation is a simple one-line command in the terminal or command prompt:
npm install Cap -g. This installs the compiler and all of its dependencies in a
global location on the system (indicated by the -g argument). Once installed the

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

5 DESIGN AND IMPLEMENTATION 44

Cap compiler is available as a command line utility: capc. Verification that the
compiler has been successfully installed and usage information can be displayed by
running the command capc -h.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

6 EVALUATION 45

6 Evaluation

6.1 Reflection on Language Specification

This section will evaluate the success of the project in relation to the specification
proposed in the Requirements Analysis section.

Uniformity

The Cap language has uniformity at the core of its design. In Javascript, the
context of an assignment affects which operator is used. An assignment statement
uses ‘=’, but in the context of an object literal a ‘:’ is used. Cap uses the ‘=’ in
both situations. Where JavaScript uses operators to achieve function-like behaviour
with throw and typeof, Cap uses functions.

Simplicity

In JavaScript, there are multiple object creation patterns: literals, constructor func-
tions and Object.create(). This can, at best, lead to inconsistency between
developers and at worst, create confusion. Of these, Cap eliminates all but object
literals.

In Cap, the concept of a function has been simplified. In JavaScript, a function
appears to take n arguments where n >= 0. Functions in Cap always take one
argument, which enables the means of invocation by juxtaposition and without
parentheses. To simulate multiple arguments, an n-ary tuple may be passed, and
for no arguments the empty tuple can be passed.

Clutter-free

The Cap grammar has successfully removed the need for: semi-colons as a line
terminator; commas as an array element and object literal assignment delimiter;
and replaced the need for curly braces with significant whitespace. Brackets are not
required around function arguments, since functions are invoked by juxtaposition,
nor are they required around the clause for a conditional, loop or catch.

An instance where Cap fails to alleviate clutter is where functions take an n-ary
tuple as an argument, and when the result of a function is an object whose method is
used immediately. In retrospect, the parentheses around object, array and function
literals makes them quite useful for passing in place as arguments. CoffeeScript

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

6 EVALUATION 46

achieves a better balance in this trade-off using optional braces. However, this
makes the syntax less uniform—one of the core aims of this project.

Inheritance

There is much confusion about inheritance in JavaScript, which is understandable
given the number of ways in which it can be achieved, and the existence of new
and constructor function even though it is prototype-based. Cap avoids these and
implements prototypical inheritance with one simple function: extend.

Traits are implemented in Cap as an alternative form on inheritance. The exis-
tence of a second method goes against language goals to be simple and uniform,
however, as mentioned it is an experiment which can afford to be made at this
stage. It may turn out that traits are more popular and useful that prototypical
inheritance, or it may turn out that they are not used at all. This remains to be
seen and the language can adapt accordingly.

Typing

Like JavaScript, Cap remains dynamically and weakly typed. It was not in the
goals of this project to address issues with typing; however dynamic type-checking
increases the risk of run time errors (compared with static type-checking), com-
pounding the debugging issues with Cap.

Literals

Literals are cleaner than in JavaScript, disposing of many unnecessary characters.
The only drawback is that, as a result of being unable to put them in place in a
function call, the where clause becomes overused.

Blocks

The delimitation of blocks by indentation enforces the style which is prevalent in
curly-brace delimited languages anyway. The elevation of this optional style to
required syntax means that developers can simply not use misleading indentation,
since it results in a syntax error. The syntax is also cleaner as a result.

Function Invocation

In the initial implementation using the Jison parser generator, function invocation by
argument juxtaposition proved difficult. However, this was more of a limitation of

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

6 EVALUATION 47

the bison grammar format than the parser generator itself. When the transition to
a hand-coded recursive descent parser was made, the implementation was achieved.

Variable Declaration

In Cap, variables are created when they are first used, which removed the need for
the var keyword. The only case where var is useful is to declare a variable in an
outer scope, so that it can be used in a level above where it is first assigned to.
In Cap, this is achieved by simply assigning to the nil value ()), which can be
considered more consistent.

6.2 Reflection on Compiler Specification

This section will evaluate the success of the project in relation to the specification
proposed in the Requirements Analysis section.

Scope

Compiled Cap code uses the scope of an anonymous function to prevent things
from being assigned to the global scope. The implementation also goes further,
providing the same module pattern that Node.js uses in the browser. This adds a
level of consistency to the development of a web application and circumvents the
use of global variables in the browser.

Error Messages

Cap error messages are intended to be useful to the programmer. Ideally they will
correctly identify the location of the error along with information about what caused
it. There are some cases where it succeeds in this goal, and some where it does not.
An example where Cap provides good error feedback is on scope checks, where an
undefined variable produces the following output:

- Error on line 20:
`item ` is not defined in the current scope

+
|

16 | options = {}
17 | height = 500
18 | width = 500
19 |

> 20 | item.remove ()

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

6 EVALUATION 48

|
+

However, there are some cases where the error message is completely unrelated
to the cause of the error. The following example shows an error with indentation,
where line 13 should be indented one level further than it is:

- Error on line 13:
Expecting `=` token , found `.`

+
|

9 | console.log 'destroy '
10 |
11 | core.listen ('ready ', start) where
12 | start = ||

> 13 | core.runScene 'start '
14 |
15 | core.init options where
16 | options = {}
17 | height = 500

|
+

Work could be done on the existing parser to improve error messages. It would
also be useful for the parser to have some form of error recovery so that it can
report more than just the first error that is discovered. For these reasons, it might
be useful to explore different parser generators with built-in techniques for dealing
with errors, for example language.js[26]—a PEG parser generator in JavaScript with
a focus on good error handling.

Compiled Source

The compiled source maintains a legible style and always produces valid JavaScript
output. This is verified in the acceptance tests by using Uglify to parse the output,
which will throw an error if the JavaScript is invalid.

ECMAScript Compatibility

Cap runs in ECMAScript 3+ environments, which means it is compatible with
browsers as old as IE6. It does so without sacrificing functionality, since it makes
use of the ECMAScript 5 shim[31]. The only drawback is the incurrence of a 10
kilobyte overhead in the download of the minified shim. To put this in to perspective,

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

6 EVALUATION 49

10kB is roughly the size of a 200x150 pixel JPEG at 70% quality—in other words,
quite a small proportion of the 1018kB total weight for the average web page[2].

Source location

The only goal that was not achieved was to print information about the Cap source
location as comments in the JavaScript that it generated. In its current state, this
poses a debugging issue for programs written in Cap. This is a feature that should
be added to the compiler as a priority.

6.3 Performance

In order for the Cap language to succeed there should be minimal, if not zero over-
head in performance when compared with plain JavaScript. The browser and Node,
JavaScript’s main environments, are asynchronous and IO bound domains rather
than CPU bound, so the effect of any performance overhead should be minimal.
However, as JavaScript’s throughput capacity is already less than that of compiled
languages since it is interpreted, it would be ideal to not to increase this deficit.

Benchmarks of four sample programs were made using the browser-based bench-
marking tool JSPerf[10]. The results (Figure 5) show that there is only a small
degradation of performance of compiled Cap versus plain JavaScript. The four
benchmark programs can be found in the project source code in the benchmarks

directory.

Figure 5: JSPerf benchmarks

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

6 EVALUATION 50

Neither the JavaScript nor compiled Cap examples were optimised (the Cap
compiler’s optimisation step was not utilised), a step which may reduce the per-
formance difference. Further tests would be needed to see if this would be the
case. Performance was not a primary concern for the language at this stage of
its implementation but readability of its compiled source was. These are poten-
tially conflicting aims, but if performance became an issue, work could be done to
optimise the compiled code.

6.4 Future Extensions

6.4.1 Simple Enhancements

The compiler is lacking in some simple convenience functions and extensions which
would be useful and quick to add:

String Interpolation

Rather than the laborious concatenation of strings and expressions, a useful conve-
nience is some level of string interpolation. Ruby achieves this with syntax like:

foobar = "blah"
"the value of foobar is #{ foobar }"

The implementation could allow the insertion of expressions (like Ruby and Coffee-
Script do) or just variables.

Operators

The compiler is missing some operators that exist in JavaScript, +=, -=, *=, /=, %.
These are useful and would be relatively simple to implement.

Watch option

To ease the development workflow, a useful addition to the compiler would be a
mode that watches a collection of source files, and recompiles them when they
change.

6.4.2 Decoupling From JavaScript

In its current state, the Cap developer must know both Cap and JavaScript in order
to use it. This can be problematic for newcomers, who have twice as much to learn,
and problematic for JavaScript programmers, who could become confused about

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

6 EVALUATION 51

the boundaries between the two. However, the fact that the JavaScript APIs are
transparently available, and that Cap and JavaScript objects are equivalent, mean
that it is easy for Cap to interface with pre-existing JavaScript libraries. It also
means that developers familiar with the JavaScript API automatically know how to
achieve a lot of built-in functionality in Cap, plus they can make use of the copious
amount of JavaScript libraries and frameworks that already exist.

This hybrid approach has been successful for CoffeeScript, which has seen a
great deal of praise and adoption. However, CoffeeScript explicitly ties itself into
JavaScript’s semantics, providing a thin layer of abstraction, whereas Cap intends to
be further removed. The use of the same JavaScript data structures can expose the
ability to manipulate underlying objects in a way which may circumvent consciously-
made design decisions of the language.

To decouple Cap from JavaScript it would be necessary to create a sort of
runtime environment—a set of Cap data-types and a standard library where each
of the data-types like Object, Arrays and String are implemented, plus built in
modules like Math, RegExp and Date. This would mainly be a thin layer of proxies
that makes use of, and extends, the functionality built into JavaScript, but it could
also address any shortcomings of the data-types and libraries.

The decision to progress to the decoupled approach should not be made lightly,
since the inability to interface with plain JavaScript code removes an incredibly rich
resource. While making the language more secure and self-sufficient, it could render
it significantly less useful. In making the transition towards this approach, a couple
of techniques could be used: a transpiler could be created to create Cap source from
useful JavaScript libraries, or a JavaScript interface could be created within Cap to
allow the manipulation of plain JavaScript objects. However, these techniques are
potentially problematic, and are an added complication for the developer. Interest-
ingly, the designers of Scala, a language built on top of the Java Virtual Machine,
decided that Java interoperability was worth the trade-offs.

One other potential drawback of the decoupling from JavaScript is the increased
size of the compiled Cap source. However, this is not an issue when the target
environment is Node.js, since the code does not have to be transported anywhere,
and in the browser, the application would have to be of a certain scale to justify using
a language other than JavaScript anyway. Since the Cap library will be of constant
size, as the scale of the application grows, the overhead will become smaller.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

6 EVALUATION 52

6.4.3 Bootstrapping

For new programming languages, a compiler has to be written in some existing
language. It is common for a new compiler to be re-written in the new lan-
guage and have it compiled by the existing compiler. This process is known as
bootstrapping[42].

Not only does this create the opportunity to write a large-scale application in
the language, giving the ability to uncover potential improvements, but for Cap this
would mean the compiler no longer depended on Node. This means it would be
possible to use it in the browser, facilitating a browser-based interactive introduction,
like CoffeeScript has, or scratch pad, similar to JSFiddle[1], where users can edit
and run JavaScript in the browser.

6.4.4 User Testing

It would useful to gather some opinions on Cap by having people write programs
in it. It has already been discussed that evaluating new programming languages is
problematic, but some useful insight could be provided by experienced programmers,
especially those with different backgrounds to myself. These opinions might ratify
or conflict with the design decisions made, but if constructive they could help to
evaluate and evolve the language.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

7 CONCLUSION 53

7 Conclusion

Overall, the project was a great success. The design goals were achieved, and a
working, feature-rich compiler was produced. More work is required before Cap can
be considered ready for production, but in its current state it is ready to be released
to early-adopters for alpha-testing.

The language successfully inherits the advantages of JavaScript in a clean and
clear syntax, provides features where they are are missing and makes amends for
JavaScripts shortcomings.

It appears that conciseness and uniformity in the design of a programming lan-
guage are conflicting goals. Cap sacrifices some of its terseness for uniformity; it
could be argued that it this is a good tradeoff—it makes the language easier to
learn, more predictable and clearer to read, however it does mean more typing.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

REFERENCES 54

References

[1] jsfiddle. http://jsfiddle.net/ Last accessed: 18/04/2012.

[2] HTTP Archive. Interesting stats. http://httparchive.org/interesting.
php#bytesperpage Last accessed: 17/04/2012, April 2012.

[3] Jeremy Ashkenas. Coffeescript. http://jashkenas.github.com/

coffee-script/ Last accessed: 13/11/2011, .

[4] Jeremy Ashkenas. Underscore.js. http://documentcloud.github.com/

underscore/ Last accessed: 15/04/2012, .

[5] Dmitry Baranovskiy. Raphaël—javascript library. http://raphaeljs.com/

Last accessed: 15/04/2012.

[6] Mihai Bazon. Uglifyjs. https://github.com/mishoo/UglifyJS Last ac-
cessed: 22/04/2012.

[7] British Computer Society. Bcs code of conduct. http://www.bcs.org/

upload/pdf/conduct.pdf Last accessed: 16/11/2011, .

[8] British Computer Society. Code of good practice. http://www.bcs.org/

upload/pdf/cop.pdf Last accessed: 16/11/2011, .

[9] James Burke. Requirejs. http://requirejs.org/ Last accessed:
22/04/2012.

[10] Mathias Bynens. jsperf: Javascript performance playground. http://jsperf.
com/ Last accessed: 17/04/2012.

[11] Scott Chacon. Git - fast version control system. http://git-scm.com/ Last
accessed: 16/11/2011.

[12] Nicolae Claudius. altjs compile-to-javascript language list. http://altjs.

org/ Last accessed: 16/11/2011.

[13] Douglas Crockford. Classical inheritance in javascript. http:

//www.crockford.com/javascript/inheritance.html Last accessed:
16/11/2011.

[14] Douglas Crockford. http://yuiblog.com/blog/2006/06/01/

global-domination/ Last accessed: 22/04/2012, June 2006.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

REFERENCES 55

[15] Douglas Crockford. JavaScript: The Good Parts. O’Reilly Media, 2008.

[16] Angus Croll. The secret life of javascript primitives.
http://javascriptweblog.wordpress.com/2010/09/27/

the-secret-life-of-javascript-primitives/ Last accessed:
20/04/2012, September 2010.

[17] Kevin Dangoor. Commonjs modules. http://www.commonjs.org/specs/

modules/1.0/ Last accessed: 14/04/2012, 2009.

[18] Brendan Eich. Es.next. http://www.slideshare.net/BrendanEich/

esnext#text-version Last accessed: 13/11/2011, .

[19] Brendan Eich. (untitled). http://www.jwz.org/blog/2010/10/

every-day-i-learn-something-new-and-stupid/#comment-1021 Last
accessed: 14/11/2011, .

[20] Brendan Eich. Bug 618650 - map js source coordinates to source language that
was translated to js. https://bugzilla.mozilla.org/show_bug.cgi?id=
618650 Last accessed: 16/11/2011, .

[21] Group for AMD JS Module API. amdjs-api wiki. https://github.com/

amdjs/amdjs-api/wiki Last accessed: 22/04/2012.

[22] GitHub Inc. Github - social coding. https://github.com/ Last accessed:
16/11/2011.

[23] Google Inc. traceur-compiler: Google’s vehicle for javascript language design
experimentation. http://code.google.com/p/traceur-compiler/ Last
accessed: 14/11/2011.

[24] TJ Hollowaychuk. commander.js. https://github.com/visionmedia/

commander.js/ Last accessed: 22/04/2012.

[25] TJ Hollowaychuk. Mocha - the fun, simple, flexible javascript test framework.
http://visionmedia.github.com/mocha/ Last accessed: 17/04/2012,
2011.

[26] Francisco Ryan Tolmasky I. Language.js. http://languagejs.com/ Last
accessed: 17/04/2012.

[27] Google Inc. Dart: Structured web programming. http://www.dartlang.

org/ Last accessed: 14/11/2011.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

REFERENCES 56

[28] Joyent, Inc. node.js. http://nodejs.org/ Last accessed: 16/11/2011.

[29] The jQuery Foundation. jquery: The write less, do more, javascript library.
http://jquery.com/ Last accessed: 15/04/2012.

[30] Anton Kovalyov. Jshint, a javascript code quality tool. http://www.jshint.
com/ Last accessed: 17/04/2012.

[31] Kris Kowal. Ecmascript 5 compatibility shims for legacy javascript engines.
https://github.com/kriskowal/es5-shim Last accessed: 18/04/2012.

[32] Cluster Technology Limited. js-beautify-node. https://github.com/

clustertech/js-beautify-node Last accessed: 22/04/2012.

[33] Peter Michaux. Class-based inheritance in javascript. http://michaux.

ca/articles/class-based-inheritance-in-javascript Last accessed:
16/11/2011.

[34] Netscape Communications Corporation. Netscape and sun announce
javascript, the open, cross-platform object scripting language for enterprise net-
works and the internet. http://web.archive.org/web/20070916144913/

http://wp.netscape.com/newsref/pr/newsrelease67.html Last ac-
cessed: 13/11/2011.

[35] John Resig. Simple javascript inheritance. http://ejohn.org/blog/

simple-javascript-inheritance/ Last accessed: 16/11/2011.

[36] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black.
Traits: Composable units of behavior. Technical Report IAM-02-005, In-
stitut für Informatik, Universität Bern, Switzerland, November 2002. URL
http://scg.unibe.ch/archive/papers/Scha02bTraits.pdf. Also avail-
able as Technical Report CSE-02-014, OGI School of Science & Engineering,
Beaverton, Oregon, USA.

[37] Isaac Schlueter. try/catch/throw (was: My humble co-routine proposal).
https://groups.google.com/forum/#!msg/nodejs/1ESsssIxrUU/ Last
accessed: 14/04/2012, November 2011.

[38] Joel Spolsky. Can your programming language do this? http:

//www.joelonsoftware.com/items/2006/08/01.html Last accessed:
20/04/2012, August 2006.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

REFERENCES 57

[39] Stoyan Stefanov. JavaScript Patterns. O’Reilly Media, 2010.

[40] Tenni Theurer. Performance research, part 2: Browser cache
usage – exposed! http://yuiblog.com/blog/2007/01/04/

performance-research-part-2/ Last accessed: 15/04/2012, January
2007.

[41] W3Counter. W3counter - global web stats. http://www.w3counter.com/

globalstats.php?year=2011&month=10 Last accessed: 13/11/2011.

[42] Des Watson. High-Level Languages and Their Compilers. Addison Wesley,
1989.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

A FORMAL GRAMMAR SPECIFICATION 58

Appendices

A Formal Grammar Specification

The following BNF style grammar describes Cap’s syntax. Square brackets demar-
cate optional components.

These notational conventions are used:

• /* and */ delimit comments and character set descriptions for succinctness

• [] indicates optional components (zero or one occurrences)

• * indicates zero or many occurrences

• + indicates one or many occurrences

• | indicates choice

• () indicates grouping

<program > ::= <statementList > | <empty >

<statementList > ::= <statement >+

<statement > ::= <singleStatement > <lineBreak >+

<singleStatement > ::= <expression >
| <conditional
| <where >
| <loop >
| <tryCatch >

<expression > ::= <singleLineExpression >
| <multiLineExpression >

<simpleExpression > ::= <functionCall >
| <prefixOperator > <simpleExpression >
| <simpleExpression > <infixOperator >

<simpleExpression >
| <concatenation >
| <reference >
| <number >
| <boolean >
| <string >
| <tuple >

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

A FORMAL GRAMMAR SPECIFICATION 59

<complexExpression > ::= <literal >
| <assignment >

<conditional > ::= <ifelse >
| <shortConditional >

<ifelse > ::= <if > <elseif >* [<else >]

<if> ::= "if" <simpleExpression > <lineBreak >
<indent > <statementList > <outdent >

<elseif > ::= "else if" <simpleExpression > <lineBreak >
<indent > <statementList > <outdent >

<else > ::= "else" <lineBreak > <indent > <statementList >
<outdent >

<shortConditional > ::= <simpleExpression > "?" <lineBreak > <indent >
<statement > [<statement >] <outdent >

<where > ::= <functionCall > "where" <lineBreak > <indent >
<assignmentList > <lineBreak > <outdent >

<loop > ::= "while" <simpleExpression > <lineBreak >
<indent > <statementList > <outdent >

<trycatch > ::= "try" <lineBreak > <indent > <statementList >
<outdent > "catch" <identifier > <lineBreak >

<indent > <statementList > <outdent >

<literal > ::= <objectLiteral >
| <arrayLiteral >
| <functionLiteral >

<objectLiteral > ::= "{}" [<lineBreak > <indent >
<assignmentList > <outdent >]

<assignmentList > ::= <identifier > "=" <expression >
(<lineBreak > <identifier > "="

<expression >)*

<arrayLiteral > ::= "[]" [<lineBreak > <indent >
<expressionList > <outdent >]

<expressionList > ::= <expression >+

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

A FORMAL GRAMMAR SPECIFICATION 60

<functionLiteral > ::= "|" <paramList > "|" [<lineBreak >
<indent > <statementList > <outdent >]

<paramList > ::= <identifier >+

<functionCall > ::= <simpleExpression > <simpleExpression >
/* Function calls are left associative */

<assignment > ::= <reference > "=" <expression >

<prefixOperator > ::= "!"
| "-"

<infixOperator > ::= "+"
| "-"
| "*"
| "/"
| ">"
| ">="
| "<="
| "=="
| "!="
| "&"
| "|"
/* Infix operators are left associative */

<concatenation > ::= <simpleExpression > ":" <simpleExpression >

<reference > ::= <identifier > ("." <identifier >)*

<identifier > ::= <identifierChar >+

<identifierChar > ::= /* A-Z, a-z */

<number > ::= <decimal >
| <scientificNotation >

<decimal > ::= <digit >+ ["." <digit >+]

<scientificNotation > ::= <decimal > "e" <digit >+

<digit > ::= /* The characters 0 to 9 */

<boolean > ::= "true"
| "false"

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

A FORMAL GRAMMAR SPECIFICATION 61

<string > ::= "'" <stringChar >* "'"

<tuple > ::= "(" <simpleExpression >
("," <simpleExpression >)* ")"

<stringChar > ::= /* Any non -line -breaking char except "'" */

<indent > ::= /* An indent (according to the offside
rule). Can be tabs or spaces */

<outdent > ::= /* An outdent (according to the offside
rule). Can be tabs or spaces */

<lineBreak > ::= /* Any single line breaking character */

<empty > ::= /* Empty */

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

B LOG 62

B Log

A weekly log was made of the progress achieved and short-term objectives:

August 2011: Wrote some basic idealistic syntax, sample programs and prospective gram-
mar. Considered basic syntax changes for first iteration of compiler (simply
remove colons etc.), then add syntactic sugar. Research in to JavaScript
parser generators: narrowed down to PEG.js (a js implementation of Parsing
Expression grammars) or Jison (a js port of Bison). Looking at relevant/sim-
ilar projects, eg. CoffeeScript, Traceur, Caja. Finding relevant projects for
compiler implementation esp. offside rule parsing, e.g Jade, Stylus.

3/10/11 Met with supervisor.

Progress: presented findings so far, talked about syntax

Objectives: implement parser

10/10/11 Met with supervisor.

Progress: basic parser implemented

Objectives: compile some trivial code to js

17/10/11 Met with supervisor.

Progress: Compiled some trivial js

Objectives: Create automated test suite for compiler

24/10/11 Met with supervisor.

Progress: Created automated test suite w/ code coverage report. Also found
and implemented automated docs tool.

Objectives: Amend parser to use invocation by juxtaposition

31/10/11 Met with supervisor.

Progress: Amended parser to use invocation by juxtaposition. Big refactor.

Objectives: Finding difficulty avoiding ambiguity in parser generator, write
parser by hand.

07/11/11 No meeting.

Progress: Foundations of parser written by hand.

Objectives: Add features to parser.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

B LOG 63

14/11/11 No meeting.

Progress: Added features to parser.

Objectives: Write interim report.

21/11/11 No meeting.

Progress: Report written and handed in.

Objectives: Away following week âĂŞ no objectives.

28/11/11 Away.

5/12/11 No meeting.

— Christmas break —

16/01/12 Met with supervisor.

Progress: None

Objectives: Complete compiler.

23/01/12 No meeting.

Progress: Progress on compiler, but realised add complexity needed.

Objectives: Tests have been lagging, catch up.

30/01/12 No meeting.

Progress: Updated tests. Moved to new test framework.

Objectives: Continue progress on compiler, factor out code generation and
because a modifier needs to modify the AST

6/02/12 No meeting.

Progress: Code generation moved into generators object.

Objectives: Continue adding features to generator

13/02/12 No meeting.

Progress: Adding functionality to generators.

Objectives: Implement block scoping and ‘local’ to prevent overwriting vars
outside scope

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

B LOG 64

20/02/12 No meeting.

Progress: Implemented block scoping. Decided against ’local’. Documenta-
tion.

Objectives: Add functionality to generators. Increase test coverage

27/02/12 Met with supervisor.

Progress: Implemented block scoping. Decided against ’local’. Documenta-
tion.

Objectives: Add functionality to generators. Increase test coverage

05/03/12 No meeting.

Progress: Increased fuctionality of generators and coverage.

Objectives: None

— Easter break —

12/03/2012 No meeting.

Progress: None

Objectives: Fix some outstanding bugs.

19/03/2012 No meeting.

Progress: Bugs fixed, more documatation.

Objectives: Implement comments and array accessors

26/03/2012 No meeting.

Progress: Comments and array accessors implemented.

Objectives: Add tests for generators. Add syntax mode for editors.

02/04/2012 No meeting.

Progress: Tests added, syntax mode created.

Objectives: Features for cli.

09/04/2012 No meeting.

Progress: Features for cli. Started proof of concept app.

Objectives: Proof of concept app, bug fixes.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

B LOG 65

16/04/2012 Met with supervisor.

Progress: Finished proof of concept app.

Objectives: Finish report.

Ben Gourley Cap: A Compile-to-JavaScript Programming Language

